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Abstract 

An a n a l y t i c a l  and experimental i nves t iga t ion  of the  e f f e c t s  of l a r g e  

prebuckllng deformation on t he  buckling of this-walled, clamped, c y l i n d r i c a l  

s h e l l s  subjected t o  combinations of axial loading and internal  pressure,  has  

been c a r r i e d  out .  These l a r g e  deformations are caused by edge conditions a t  

the  ends of t h e  s h e l l s .  
'\ 

Imperfection f r e e  test specimens have been provided by the  cen t r i fuga l  

A ca re fu l ly  executed test cas t ing  of a b i r e f r ingen t  eppoxy r e s i n  compound. 

program permitted achievement of a one-to-one correspondence between t h e  

t h e o r e t i c a l  and experimental models. 

deformations has  been demonstrated by means of t he  pho toe la s t i c  (photostress) 

technique. A **two-step'* per turba t ion  technique has  been used t o  a r r i v e  a t  

the  d i f f e r e n t i a l  equations governing the  s h e l l  buckling and a so lu t ion  has 

been achieved by m e a n s  of the  Galerkin method and app l i ca t ion  of the  IBM 7074 

computer. 

The ex is tence  of t he  prebuckling 

The r o l e  of the  nonuniform deformation, i n  reducing the  buckling loads 

from t h a t  predicted by classical l i n e a r  theory, has been demonstrated by 

experiment. 

f o r  s h e l l s  of l imi ted  range of s h e l l  l engths .  

Good agreement between ana lys i s  and experiment has been encountered 

The inadequacy of t h e  c l a s s i c a l  membrane model t o  descr ibe  such s h e l l s  

a t  t h e  inc ip ience  of buckling is ve r i f i ed .  
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Preface 

The ob jec t ive  of t h i s  work has been t o  demonstrate both a n a l y t i c a l l y  

and experimentally t h e  e f f e c t  of l a rge  nonuniform prebuckling deformations 

on t h e  buckling of clamped thin-walled, c y l i n d r i c a l  s h e l l s  subjected t o  

combinations of axial compressive loading and i n t e r n a l  pressure.  These 

prebuckling deformations arise due t o  t h e  clamped conditions imposed a t  

t h e  edges of t h e  s h e l l s .  

The urgent need f o r  such an inves t iga t ion  r e su l t ed  from recent  ana- 

[I61 l y t i c a l  research work ca r r i ed  out  i n  tbds f i e l d  by S te in  

They inves t iga ted  the  e f f e c t s  of la rge  prebuckling deformations on the  

buckling loads of simply supported c y l i n d r i c a l  s h e l l s .  S t e i n  reported 

reductions of up t o  55% from t h e  buckling loads predicted by c l a s s i c a l  l i n e a r  

theory. 

ou t  that the  d i f f e rence  i n  t h e i r  f indings w a s  probably due i n  p a r t  t o  t h e  

f a c t  t h a t  S t e i n  s tud ied  the  case of vanishing tangential shear  a t  t h e  edges, 

whi le  Fischer s tud ied  t h e  case of vanishing t angen t i a l  displacement. H e  

a l s o  pointed out t h a t  S t e in ' s  edge conditions d id  not  correspond t o  those 

used i n  the  classical l i n e a r  theory. 

and Fischer.  

Fischer reported reductions of not more than 15%. Koiter [17' pointed 

It thereby became apparent, t ha t  t h e  u l t imate  answer t o  t h e  question 

regarding t h e  r o l e  of prebuckling deformations i n  reducing t h e  buckling loads 

of t h i n  cy l inders  would have t o  be sought i n  c a r e f u l  experiment. 

t h i s  experimental work, an ana lys i s  would have t o  be ca r r i ed  out which provided 

a one-to-one correspondence with t h e  experiment. 

Coupled with 
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The test specimens have been prepared from a b i r e f r ingen t  eppoxy r e s i n  

compound by means of the cent r i fuga l  ca s t ing  technique. 

found t o  be v i r t u a l l y  f r e e  of i n i t i a l  geometrical imperfections and t h e  

i s o l a t i o n  of t he  e f f e c t s  of t h e  prebuckling deformations i n  reducing buck- 

l i n g  loads f r a n  that predicted by c l a s s i c a l  l i n e a r  theory has therefore  

been made poss ib le .  

thickness varying ftum 133 t o  200, and r a t i o s  of length t o  rad ius  from 

0.75 t o  4.3. The existence of the  prebuckling deformations has been 

demonstrated by means of the photoe las t ic  (photostress) technique. 

She l l s  have been 

Shel l s  have been t e s t e d  wi th  ratios of rad ius  t o  

The nonlinear Donne11 equilibrium equations have been used i n  the  

ana lys i s .  A s o l u t i o n  f o r  t he  prebuckling problem has been achieved and 

a "me-step" per turba t ion  technique has  been used t o  arrive a t  t h e  d i f -  

f e r e n t i a l  equations governing t h e  s h e l l  buckling. 

The buckling equations have been solved by means of t he  Galerkin method 

and with t h e  a i d  of an  IBM 7074 d i g i t a l  computer. 

Results of both t h e  experimental and a n a l y t i c a l  work have been presented 

i n  graphica l  form and these  findings have been discussed a t  some length.  

This work has been sponsored by the  National Aeronautics and Space 

Administration, Grant NsG-627. 

It has  a l s o  been supported i n  p a r t  by t h e  National Science Foundation 

Grant GP-137. 
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INTRODUCTION 
1 

The mathematical foundations of the theory of elastic stability were 

first laid down by Euler. 

the buckling loads for thin cylindrical shells subjected to axial loading. 

On the basis of this theory Timoshenko"' computed 

Choosing a suitable coordinate system to specify the shell initial con- 

figuration, he equated to zero the resultants of the longitudinal, tangential, 

and radial forces acting on a differential element of the shell. Using Hook's 

law to relate stresses with strains, and the linearized strain displacement 

relationships, he arrived at three simultaneous linear homogeneous differential 

equations of equilibrium relating the shell displacements, end loading, shell 

structural properties and getmetry. 

It was assumed that on buckling the shell generators and circumference 

take on a sinusoidal configuration. The small longitudinal, tangential, and 

radial displacements were assumed to be of the form (Pig. 3) 

a 
mnx u = A sin cos - L 

* 

* mnx v = B cos sin - R L 

* m m  w = c sin sin - L 

with the origin of coordinates taken at one end of the shell. 

required that the shell generators divide into m half waves, and the circum- 

ference into n full waves. Substituting these expressions for the displacements 

into the differential equations of equilibrium he arrived at a set of three 

These displacements 
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simultaneous a lgeb ra i c  l i n e a r  homogeneous equations f o r  t he  q u a n t i t i e s  

A, B, and C. To compute the  buckling load i t  w a s  required t h a t  a non- t r iv i a l  

s o l u t i o n  exist f o r  t hese  quan t i t i e s ,  i.e., t h a t  t h e  determinant of t h e i r  

c o e f f i c i e n t  m a t r i x  be equal t o  zero. This pu t  a r e l a t ionsh ip  between t h e  

s h e l l  loading and t h e  i n t e g e r s  n, and m. It w a s  then shown t h a t  t h e  lowest 

value of the loading which could s a t i s f y  the  constraining r e l a t ionsh ip ,  with 

permiss ib le  values of m and n w a s  as follows: 

where P 

t h e  edge of t h e  s h e l l .  

is known as the  Euler buckling load per u n i t  circumference along E 

In t h e  case of columns and p l a t e s ,  very good agreement has been found 

between predic t ions  based on theory and experimental r e s u l t s ,  however, i n  

t h e  case of t h i n  walled cy l ind r i ca l  s h e l l s  subjected t o  axial compressive 

loading, l a r g e  discrepancies have been encountered. In  experiments c a r r i e d  

out  by Donnell['I and i t  w a s  found t h a t  t hese  s h e l l s  buckled under 

loads of only a f r a c t i o n  of t h a t  predicted by theory (Fig. 1 ) .  

D ~ n n e l l [ ~ ] ,  and later Donne11 and W a n [ 4 1 ,  t r i e d  t o  expla in  t h i s  d i s -  

crepancy on t h e  existence of geometric imperfections as w e l l  as r e s i d u a l  

stresses i n  t h e  test specimens. FlEgge[51 attempted t o  expla in  i t  by 

a t t r i b u t i n g  i t  t o  t h e  r e s t r a i n t  t o  r a d i a l  movement of t he  s h e l l s  which w a s  

provided by t h e  t e s t i n g  machine or supporting edge p l a t e s .  Both w e r e  ab l e  

t o  explain a c e r t a i n  amount of reduction i n  t h e  c r i t i ca l  buckling load, how- 
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ever, they could not account for the fact that the configuration of the 

buckled test shell was much different from that predicted by theory. 

The reason why thin cylindrical shells do not behave In a manner 

similar to flat plates when they buckle was investigated by 7ron RgrmSn and 

Tsien16'. 

deformations of the order of several wall thicknesses. The relationships 

which then connect the displacements with the stresses are highly nonlinear. 

A nonlinear large deflection theory must therefore be used instead of the 

They showed that on buckling, thin shells can undergo lateral 

linear one. The 

KdrmSn and Tsien 

figurations of a 

form of the type 

nonlinear theory was laid down by Donnell''], and von 

employed it to determine the possible equilibrium con- 

thin cylindrical shell under axial loading. 

observed in buckled shells was assumed and the Rayleigh- 

A deformation 

_ _  

Ritz method was used to obtain a solution. 

Von K b d  and Tsien found that there existed other equilibrium 

configurations in addition to the unbuckled configuration, for loads lower 

than the Euler critical load (Fig. 2 ) .  These other configurations were 

associated with large deflections in the cylinder walls. While this approach 

did not indicate that shells must buckle at loads lower than the Euler load 

it did show that small external disturbances could readily cause shells to 

"jump" from an unbuckled to a nearby buckled configuration before the Euler 
3 

load had been reached. 

A valuable contribution to the understanding of why experimentally 

observed large displacement buckling is possible with thin cylindrical 

shells was made by Yoshi~uura[~]. He used differential geometry to show 
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t h a t  a c i r c u l a r  c y l i n d r i c a l  s h e l l  could be transformed i n t o  a set of plane 

t r i a n g l e s .  This transformation required bending of the s h e l l  w a l l .  The 

work of bending of a t h i n  s h e l l  w a l l  is r e l a t i v e l y  small cmpared to t h a t  

of membrane compression o r  extension. 

w a l l s  t o  undergo l a r g e  displacements due t o  bending. 

p l a t e s  with edges supported aga ins t  lateral displacements cannot be deformed 

t o  a l a r g e  de f l ec t ion  buckled configuration without l a rge  membrane s t r a i n s  

occurring and hence much addi t iona l  work being supplied by the  applied load. 

The a b i l i t y  of p l a t e s  t o  ca r ry  increased loads a f t e r  buckling without 

undergoing l a r g e  deformation is thus explained. 

This explained t h e  a b i l i t y  of t he  

I n  con t r a s t ,  f l a t  

I n  reviewing t h e  extensive l i t e r a t u r e  ava i l ab le  on t h e  sub jec t  of 

buckling of t h i n  c y l i n d r i c a l  s h e l l s  i t  is su rp r i s ing  t o  f i n d  t h a t  so l i t t l e  

a t t e n t i o n  has been devoted t o  inves t iga t ing  t h e  e f f e c t s  of edge conditions 

on t h e  buckling loads.  

mental r e s u l t s  obtained by earlier writers. [*I 

assumed t h a t  a s h e l l  whose l eng th  is g r e a t e r  than th ree  qua r t e r s  of i ts  

diameter may be considered as a s h e l l  of i n f i n i t e  length i n  so f a r  as edge 

e f f e c t s  are concerned. I n  o t h e r  cases t h e  edges are considered t o  be  sup- 

ported i n  some way during buckling bu t  prebuckling deformation is e i t h e r  

neglected o r  considered t o  be  uniform throughout and prebuckling bending 

stresses are assumed t o  have no e f f e c t  on the  buckling load. 

t i o n s ,  convenient though they may be from the  viewpoint of t h e  ana lys i s ,  

have been se r ious ly  challenged by more recent  researchers  i n  t h i s  f i e l d .  

An explanation, perhaps, may be found i n  t h e  experi- 

I n  many cases i t  has been 

These assump- 
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Thielmann[*] has c r i t i c i z e d  the assumption of von K&m6n and Tsien, 

and of later researchers,  t h a t  buckles are d i s t r i b u t e d  pe r iod ica l ly  over 

the  e n t i r e  length of t h e  buckled s h e l l  and t h a t  s h e l l  length has no inf luence  

on buckling loads. 

i n  experimental tests l o c a l  buckles are observed. 

Uemura , and Evan-Iwanowski t he  phenomena of loca l ized  buckling has 

been introduced. 

This assumption has  been made i n  s p i t e  of t he  f a c t  t h a t  

I n  more recent  works by 

f?] fro! 

I n  reviewing papers i n  connection with experimental work ca r r i ed  out 

by Donnell"] one f inds  the  following statement with regard t o  edge con- 

d i t i o n s ,  "In a l l  the  experiments c i t ed  i n  t h i s  paper t he  ends of t h e  

cy l inders  w e r e  clamped or f ixed  i n  some way. 

of t h e  cy l inder  near t h e  ends t o  such an ex ten t  t h a t  buckling always 

s t a r t e d  a t  some d i s t ance  from t h e  ends. 

ended, e c c e n t r i c i t y  of loading and o the r  l o c a l  conditions a t  t h e  ends are 

l i k e l y  t o  obtain." 

t h a t  imperfection f r e e  c y l i n d r i c a l  s h e l l s  can be made t o  buckle a r b i t r a r i l y  

c l o s e  t o  the  classical buckling load, with l i m i t i n g  f a c t o r s  being t h e  degree 

This s t a b i l i z e d  t h e  w a l l  

When cy l inders  are t e s t ed  f r e e  

I n  a recent  repor t  by Tennyson [11' i t  has  been claimed 

of p rec i s ion  and care used i n  t e s t ing .  Leonard ' ''I has completely disagreed 

with t h i s  claim. 

matter, "The author is completely disregarding an  important source of 

e r r o r  i n  the  classical theory which i s  e n t i r e l y  unre la ted  t o  i n i t i a l  shape 

imperfections: t h e  incons i s t en t  assumption made i n  classical theory regard- 

ing edge conditions ." 

The following is  a quotation from h i s  remarks on the  
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A solution to the linearized axisymmetric prebuckling deformation 

131 problem for a shell with simply supported edges has been provided by Fappl 

and is presented by FlUggeI4]. 

linear problem of prebuckling deformatllons of simply supported cylindrical 

Stein computed the solution for the non- 

shells and he computed buckling loads by considering the shell to buckle from 

this ixitial oci;luniform deformation configuration. He found that the buckling 

loads were now as little as 45% of these predicted by classical theory. 

Fischer [16' has investigated a similar problem and has found reduc- 

tion from the Euler buckling loads, due to prebuckling deformations of about 

155%. Koiter[17] has pointed out that the differences in Stein's and Fischer's 

work may be explained in part by the fact that Fischer used the condition of 

vanishing tangential displacement at the edges while Stein used the condition 

of vanishing tangential shear. He also stated that since the conditions of 

Fischer represent those used in the classical membrane problem, a reduction 

in critical load for Stein's condition of zero tangential shear would likely 

be obtained even in the case of the membrane solution if Stein's boundary 

conditions were used. This was shown to be the case by Ohira E211 and by 

Recently, Hoff [18] has presented a solution for the axisymmetric 

buckling of the free end of a thin cylindrical shell. 

and Hoff 

Subsequently Nachbar 

have presented a solution to the same type of problem where 

buckling deformations have not been restricted to the axisymmetric case. In 

both instances buckling loads well below the Euler loads have been computed. 
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The objec t ive  set f o r t h  i n  t h i s  t h e s i s  has been t o  reso lve  both 

experimentally and a n a l y t i c a l l y  t h e  e f f e c t s  of prebuckling stresses and 

deformations on t he  buckling ijf t h in  c y l i n d r i c a l  s h e l l s  with ciamped edges. 

It became evident i n  the  e a r l y  s tages  of t he  work t h a t  i n  order t o  i s o l a t e  

t h e  edge e f f e c t s  experimentally i t  would be  necessary t o  f a b r i c a t e  test 

specimens which w e r e  v i r t u a l l y  f r e e  of i n i t i a l  geometric imperfections as 

w e l l  as r e s idua l  stresses. It furthermore became evident t h a t  extreme 

caut ion  would have t o  be exercised i n  f ab r i ca t ing  and f i t t i n g  edge clamp- 

ing p l a t e s ,  as w e l l  as i n  applying loading t o  the  s h e l l s ,  so t h a t  a l l  o ther  

poss ib l e  sources of reduction i n  buckling loads from the  E u l e r  loads would 

be minimized. I n  t h i s  manner only, could the  reduction i n  buckling loads 

due t o  edge e f f e c t s  be determined. 

I n  seeking an  a n a l y t i c a l  so lu t ion  t o  t h i s  buckling problem i t  became 

apparent t h a t  t he  so lu t ion  must be one which s a t i s f i e d  campletely the  pre- 

s c r ibed  experimental boundary conditions.  

thus, between experimental boundary conditions and those formulated mathe- 

ma t i ca l ly  would have t o  be s a t i s f i e d .  

buckling load from t h e  Euler load, due t o  t h e  e f f e c t s  of clamped edges, 

would be  properly evaluated. 

A one-to-one correspondence, 

I n  t h i s  manner the  reduction i n  
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The Equilibrium Equations 

In order to take into consideration the effects of prebucklirrg defor- 

mations on the buckling of shells, the tttwo-steptt perturbation technique used 

by Stein [‘’I to arrive at the differential equations governing the buckling 

is employed here. 

simply supported cylindrical shell subjected to axial and uniform lateral 

loading, has been provided by Stein[15’. 

shell with clamped edge conditions has been computed and is presented here. 

In both cases the Donne11 large deflection equations 1201 have been used. 

The large deflection solution for the case of a thin 

The solution for the case of a 

For completeness a brief review of the development of these equations is 

presented below. 

Referring to Fig. 3 and writing the equations of equilibrium for the 

forces acting in the x, y, and radial directions respectively we have: 

aNx aN 
- + - = o  
ax aY 
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9 

The equilibrium equations for the moments about the x, and y axis 

respectively are 

Using the relations 

Et3 a2w* + a 2 ~ *  M =  Et3 (a2 , *+v- )  a 2wk , M = (- 
12(1-v2) ax2 aY2 Y 12(1-v2) ay2 ax2 X 

and 

- 

We may write from Eqs. (l)d, (1)e 

11 a 4 ~ *  
-V 

a 4 ~ *  
) + 2  ( 

= Et3 a 4wk a 4 ~ *  a 4 ~ *  a4w* 
[(-+v-)+ (-+v 

12(1-v2) ay4 ay2ax2 ax4 ax2 ay2 ax2 ay2 a d  ay2 

Substituting in Eq. (l)c, we now have for the set of Donne11 equilibrium 

equations 



aN - + x = o  aNX 

ax aY 

( C )  
a% a2w + N  -1 a2w = p 

N 
DV4wrk + $ - (Nx 

+ 2Nxy axag y ay2 

From Hook's law we have 

N =  
X ( 1-v2 

N =  Et (EY + VE ) 
X (1-v2) 

The nonlinear relationships connecting strains and displacements 

are, 

av* d 1 a+ 2 
E =-+-+-(-) 
Y aY 2 aY 

au* + av* ~ a+ aw* 
P- 

Yxy ay ax ax ay 
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The Prebucklinn Deformation 

In view of the axial symmetry of the prebuckling problem, it is obvious 

that both terms on the left hand side of (2)b, are identically zero.  Also 

u and v are functions of x only. 

Substituting expressions for stresses in terms of displacements we have 

Et du* yw* + - 1 (-)2] dw* [-+- P =  dx R 2 dx 
= -  

*X (1-v2) 

1 2 ~  du* + 2 12p(1.-p2) = - 
(dx Et3 

d4w* 12P d2w* 12. 

dx4 Et3 dx2 R2t2 Rt2 dx Rt2 
& + - -  + - (1-v2) - + - 

( 6 )  

Substituting (5) in (6) we obtain 

- d 4 + + P d + - w *  2w* Et = 

dx4 dx2 R2D 

The solution to (7) for the case of clamped edges, i.e., 

w* = dw*/dx = 0 at x = - + L/2, has been computed and is as follows: 

w* = C1 sin ex sinh (px + C2 cos ex cosh (px + q 

where, 

I 

(7) 
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9 sin 9 cosh @ - 9 cos 7 OL sinh A?i ~ 

L L L L 

9L eL 8 sinh .#L + 241 sin- COS - c1 = - 2q 
2 2 

9L + 8 cos 5 sinh - 
2 

cp sin 8L cosh 
eL 8 sinh 4L + 29 sin cos - 

2 2 cp = - 2q 

differentiating with respect to x, we obtain 

dw* - =  y1 sin 9x cosh Qx + y2 cos 9x sinh $x dx 

and 

where 

d2w* - =  yg sin 9x sinh Qx + y 4  cos ex cosh QX 

dx2 

Yg = YIQ - Y*9 Y 4  = Y29 + Yl0 

The solution for the axisymmetric prebuckled form when P is greater than 

PE (the Euler loading),that is when the quantity 1 7  4 6 2  - - becomes 
imaginary, may be expressed as follows 

+ = C1 sin ex sin QX + C2 COS ex COS $IX + q 

where q is unchanged but where, 



eL [ e  cos 5 sin - + 4 cos a sin 
[e  sin 5 cos 

2 2 

2 
eL eL c1 = - 9 

+ 4 sin 2 cos 21 

13 

8L [e  cos + sin + 4 sin r) cos +I 
L L L L 

8L 8L c2 = - Q 
[ e  sin f cos + t-j sin 2 cos 21 

and where 

4 e- 1 y- - -  4J7z 
2L 

The Buckling Problem 

Before beginning the calculation of the buckling loads, a consideration 

of the applicable boundary conditions to be satisfied during buckling is in 

order. 

referred to as simply supported or clamped conditions. 

condition have been discussed in Ref. [24] and are presented here as 

examples. 

There exist many sets of boundary conditions which are commonly 

Four sets of each 

Simply support conditions: 

a -  
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Subscripts 1 indicate incremental stress resultants due to buckling. 

The edge conditions used in buckling tests referred to in this thesis are 

described by condition (4) in the "clamped boundary conditions" i.e. 

In order to arrive at the differential equations governing the buckling 

of the shell we add to the prebuckling displacements the infinitesimal buck- 

ling displacements u, v, and w. The total displacements, denoted u*, v* and 

w* may thus be written as 

u* = ; + u(x,y) 

v* = V(X,Y) (10) 

w* = w + w(x,y) 
Expressing the three equilibrium equations in terms of these displace- 

ments and dropping terms which are products of the infinitesimal buckling 

displacements u, v, and w, and making use of expressions involving pre- 

buckling deformations we arrive at the following equilibrium equations [151. . 
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v aw a a; aw + - - + -  (--) R ax ax ax ax 
a h  + I-+ a L ,  ( i+v) 2 %  

ax2 
- 

aY2  axay 2 

where 

Admissible expressions f o r  u, v, and w, i n  keeping with the  require- 

ments of cont inui ty  around the  cyl inder  are 

u = ~ ( x )  s i n  p 
3 v = V(x) cos R 

w = ~ ( x )  s i n  f 
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where J is the number of peripheral waves around the cylinder. J must be 
e 

a positive integer greater than 1. J = 1, represents a translation of the 

shell and J = 0 represents an axisymmetric form. 

Substituting the expressions of (12) into Eqs. (11) we obtain the 

following set of equations: 

d2U 1-v J2 - (l+~) J dV v dW d dw dW 
2 B dx R dx dx dx dx dx2 R2 

---- +--+-(--I 

v+--+-w+ 1-v d2V J (1-V) J d2T; 
dx2 R2 dx2 

(l+v) J dU - 52 
2 R dx R2 

(l+v) J d; dW - 
+ 2 Rdxdx 

J2 

R2 
VP - w n--2--+- d4W DJ2 d2w DJ4 W + - 1- N + p - d2W - 

R2 dx2 R4 yB dx2 dx4 

EtJ2 T; d2;;- NxB = 0 +- 
R3 dx2 

where 

- - Et dU d; dW 
NxB -- [dX+dxdx 1-v2 

J W dU d; dW 
yB 1 4  R dx dx dx 
- 

[ - T i V + - +  v(-+--)I Et N I- 
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A solution for Eqs. (13) in this paper was obtained by means of the 

Galerkin method. 

buckling displacements were expanded in sets of trigonometric functions, 

each set being selected so that each term of the buckling displacements 

satisfied completely the prescribed boundary conditions. 

The functions U(x),V(x), and W(x), appearing in the 

It was assumed that buckling is symmetrical about the center of the 

sheil so that only one half of the shell needed to be analysed. 

appropriate boundary conditions for the buckling displacements were then 

as follows: 

The 

at 

L aw 
ax 

at x = -  , u = v = w = - ' 0  

In order for these conditions to be fulfilled it was necessary, in 

view of the choice of expressions for the buckling displacements, that 

Us V, and W satisfy the following boundary conditions. 

at 

at 

Accordingly, the following expansions were chosen for Us V, and W. 

k nrx U(x) = C u sin - n-1 n 11 

(2n-1) rx k 
211 V(x) = c v cos n=l n 



Here un, v w are unknown coefficients. When these expansions for n’ n 
U, V, and W are substituted into Eqs. (13), each of the three equations con- 

tains the 3k unknown coefficients, un, vn, wn. 

three equations by the appropriate trigonometric functions, one at a time, 

integrate over the interval x = 0 ,  to x = 11, and setting the result equal 

to zero (the Galerkin method), thereby obtain 3k linear homogeneous equations 

for the coefficients . 

We now multiply each of the 

Finally, we must establish the lowest value of P, the loading per unit 

length along the edge of the shell, which will permit their coefficient 

matrix to have a zero determinant. It is this value of P which gives the 

load at which the shell will buckle. 

peripheral waves around the shell, will have a buckling load associated 

with it we must investigate different values of J, to find the lowest of 

all possible buckling loads. 

Since each choice of J, the number of 

In presenting the matrix at hand, that is the matrix of the coefficients 

u v and w denoted herein as matrix A, it is advantageous at this time 

to introduce some abbreviations. 

denoted by the symbol 6, the following notation is also used 

n’ n n’ 
In addition to employing the Kroniker delta, 

cosh a x cos a x sin 1 2 
0 

The first large capital always refers 

a x sin a4x dx = 3 

= CCSS al, a21 a39 a4 

to a hyperbolic function, either 

C denoting cosh or S denoting sinh. The following three letters represent 

the trigonometric functions, C denoting cosine and S denoting sine, and the 

following four lower case letters represent quantities appearing as shown 

above. 

18 
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Carrying out the  in t eg ra t ion  procedure described earlier, w e  then 

obta in  f o r  the  elements of the  matrix A, f o r  

f o r  

n / 2  - sin(2n-l+2m) 
4R (2n-1-2m) (2n-l+2m) 

A = (  
m,n 

f o r  

(1-n)nv (s 
2R m, n-1 

A =  
m,n 

6 Vnr - -  
2R m,n 

(n-1) TI mm - y2 [ , 0 1 2 +  0521 sccs +, e ,  { II , 
2R2 II 



for 

for 
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3 + sin(n+m-l/2)a 
2R (2IMm-l) A =  

man 



for 
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2K < n - < 3K 

1 n/2 + sin (~IH-2m-3) n/2 
(2Wb-3) 

1 JR sin (n-m+1/2) TI + s in  (nSm-l/2)n 
+- { (2n-2m+1) (2n+&-1) nR2 

{ (2m-1) n 1  
211 sscc 4 ,  e, , 2 R y3 

(1-ul J + 

(n-1) T (2m-1) n) (l+v) J (l-n)nyl 

2RR 2R cssc 0, e, t + 

err) , { L a p )  
(l+v) J (1-n) my2 

scsc 4 ,  e, t 
+ 2Ra 

{ (2m-1) IT) (l+v) J nnyl 

2R - cssc 4 ,  e, , 2RL 

42m-1) n) (l+v) J nny2 

2RR 2R 
- scsc 0, e, {?I , 



for 

for 

VET n B 

m’n 2R(1-v2) 
A =  

VET fl li 

2R(1-v2) 
f 
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-ETJ il sin(2m-2n-1) n/2 + sin(2m+2n-3) lr/2 
{ (2m-2n-1) (211~k2n-3) A =  

m,n .R2 (1-v2) 

s i n  ir(m-n+1/2) + s i n  rr(m+n-1/2) 1 ( 2m-2n+l) (W2n-1) + 

ETvJy3 
+ 

R(1-V2) 

I 
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2K < n - < 3K for 

3% *2,2 + Et!! DLJ4 P (=-I> 2 ~ 2  
211 + +-- 

R2Q (1-v2)R2 R4 

D(n-l14n4 + DJ2(n-112a2 + ET$ DJ?.J4 + t  +- 
2113 R22 2R2 ( 1-v2) 2R4 

Dn4a4 + DJ2n2a2 + ETJ?. DLJ4 Pn2r2 
R2L 2R2 ( 1-v2) 2R4 2R +-- 

& - vPJ211 
2 ~ 3  2R2 &m, n+l + 
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uETy- . (n-l)n 

RR (1-v2) 
- 1 {cssc+,e, { -I , {-I + cssc+,e, {-I, 

m l n  vETy n n  

RE ( 1-v2) 
- {cssc4,e, {?I , {+I + cssc+,e, {?I , 

E T J ~ C ~  mn 
m l n  

+ f- Csscc+,e, I (n-l)r~ , {-+I + sscc+,e, , I,) 
R3 

E T J ~ C ~  
+ 

R3 

r n l n  mn + cccc+,e, {?I , {+I + cccc+,e, , {,}I 

nlr mlr 



25 . 

m l a  (n-11% , 
.-+ cccc +,e, R 

VETY4 (n-1) TT 
' R  - {cccc~,~, a 

R(l-v') 

m l a  nn ma + cccc9,e,. 11 nB , (->+ p. cccc @,e, , TI 

(n-l)n ma FTy y (n-l)rr - {scsc 2490, (n-l)n a. 9 (m-l>rr 2 + scsc 24, 0, 11 ' R  
1 3  

4&(1-v2) 
+ 

(n-l>a, F} - scsc 24,2e, (n-l)rr , ! L  (m-l)a - scsc 24, 28, 11 

ETy y nn m l a  
na (-> + scsc 24, 28, , y {SCSC 24, 20, a , a - 

411(1-v2) 

m-1 a na mn L i L  - scsc 24, 0, T , TI na 
- scsc 29, 0, a , R 

(n-1)n ma (m-l)n+ cssc 24, 28, , + tcssc 29, 28, , 
ETy2y3 (n-1) A 

4R(l-v2) 

m l a  ETY 2Y p n  + tcssc 24, 28, nn , (->+ 9, cssc 24, 28, , 
4R(1-v2) 

m-1 a na ma - cssc 0, 28, a na , L-L R - cssc 0, 28, , TI 
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(n-1)r mn E T Y ~ Y ~ ( ~ - ~ )  + {CSSC 24, 26, (n-l)n (m-l).rr+ cssc 24, 28, 11 - 
' 1 1  4 11 (1-V' ) 

+ cssc 0, 28,  On ' (n-i j T (m-1) r + cssc 0, 20, a , a 

ETf y I i i i  1 4  
41 (I-v~) 

{cssc 24, 28, 7 , + cssc 24, 28, , + 

m l r  nn mn (->+ cssc 0, 28, , e3 11 
+ cssc 0, 28, 7 , 

n l n  ( n - l ) n  W j Y 4  (n-1) 'II 
{scsc 2 4 ,  0, y- ' 1 1  (m-l)r+ scsc 24, 0, % , 1 1  + 

4a (1-G) 

08, 
II + scsc 24, 20, h2.k , (m-l>a II + scsc 24, 28,  
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Experimental Procedure 

Specimen Preparation 

Thin-walled c y l i n d r i c a l  s h e l l s  w e r e  fabr ica ted  from an eppoxy r e s i n  and 

hardener compound using the  cen t r i fuga l  cas t ing  technique. This technique 

w a s  f i r s t  discussed i n  Ref. [ l l ] .  The cas t ing  f a c i l i t y  consisted o f a n  a c r y l i c  

drum which ro t a t ed  on a hor izonta l  a x i s  and is  shown i n  Fig. 4. The drum 

w a s  ca re fu l ly  machined and f i t t e d  with c lose  f i t t i n g  end p l a t e s  which, i n  

tu rn ,  w e r e  mounted on brass  hubs. 

and hardened steel s h a f t  w a s  passed through these  hubs. The s h a f t  w a s  sup- 

ported a t  each end by high precision b a l l  bearings located on heavy pedes ta l s .  

The pedes ta l s  w e r e  fastened t o  a concrete base. 

V b e l t  from a 1 /2  H.P. va r i ab le  speed e l e c t r i c  dr ive .  

A s p e c i a l l y  se lec ted  1 1/4" d ia .  ground 

The assembly w a s  driven by a 
The acrylic drum had inner dimensions of 18" i n  length and 8" i n  diameter. 

Six 250 w a t t  infra-red The w a l l  w a s  1/2" th i ck  and the  end p l a t e s  3 /4"  thick.  

lamps w e r e  used t o  provide heat and promote curing of t he  eppoxy. 

drum w a s  ro t a t ed  a t  1200 RPM during s h e l l  curing and i t  w a s  found t o  be 

v i r t u a l l y  f r e e  of v ib ra t ion  e f f ec t ing  forming of t he  s h e l l s .  

The 

I n  t h e  prepara t ion  of a t h i n  cy l ind r i ca l  s h e l l  a c e r t a i n  sequence of 

s t e p s  w a s  ca r r i ed  out .  These s t e p s  are described i n  order as follows: 

Wipe t h e  inner drum surface with mold release, (Hysol Co. No. (1) 

AC4-4367 w a s  used.) 

(2) Spin t h e  drum with hea t  lamps turned on t o  dry the  mold release and 

hea t  up the  drum. 
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(3) Cast a s h e l l  l i m r  i n  the  drum. This is  accomplished by mixing the 

appropr ia te  amount of Hysol Co. Resin No. R8-2038 with Hysol Hardener N o .  

H2-3404 i n  proper proportions (100 t o  11, Resin t o  Hardener, by weight) and 

pouring it i n t o  t h e  drum through holes i n  t h e  end p l a t e s .  The drum is  then 

r o t a t e d  f o r  about 3 hours with t h e  hea t  lamps turned on while t h e  liner 

hardens. The objec t  of t he  l i n e r  is t o  remove the  e f f e c t  of any small 

irregularities that might e x i s t  on the inner  drum surface.  Tine inner  sur- 

f ace  of the  hardened l i n e r  now cont ro ls  t he  outer  sur face  of the  s h e l l  t o  

be cast. 

(4) Wipe t h e  inner l i n e r  sur face  with mold release and once again 

r o t a t e  t he  drum with lamps on t o  dry the  mold release. 

( 5 )  Mix t he  necessary amount of Resin and hardener t o  provide the  

a requi red  s h e l l  thickness and add i t  t o  the  drum. Rotate the  drum, with lamps 

on, f o r  about 10 hours t o  completely cure the  s h e l l .  

(6) Remove the  cured s h e l l .  This is accomplished by pushing the  s h e l l  

and l i n e r  assembly out through one end of the  disassembled drum. The l i n e r  

is  then cu t  f r e e  of t h e  s h e l l .  The s h e l l  i s  wiped o f f  with t r ich loroe thane  

and i s  ready f o r  t e s t ing .  

The s h e l l s  produced i n  t h e  above manner have a number of f ea tu re s  which 

are highly des i r ab le  f o r  the  purpose of t e s t i n g .  

l i s t e d  as follows: 

These f ea tu res  may be 

(1) She l l  geometry i s  extremely good. She l l s  produced i n  t h i s  manner , 
with thicknesses of 0.020 i n . ,  0.025 i n .  and 0.030 i n . ,  w e r e  found t o  have 

a thickness v a r i a t i o n  of not more than 0.0005 in .  Furthermore, c y l i n d r i c a l  

s h e l l s  of various geometry can be  readi ly  produced. Since t h e  length  and 
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diameter are determined by those of the  drum, almost any dimensions can be 

achieved by varying drum geometry. Thickness of s h e l l  w a l l s  is  cont ro l led  

by s e l e c t i n g  t h e  proper amount of l i qu id  r e s i n  and hardener. 

(2) The customary problem of e f f ec t ing  a proper bond a t  s h e l l  w a l l  

seams is eliminated s i n c e  there  are no seams. 

/?\  T- -f-- 
V A G W  tf tbc nethod of shell production t he re  are no r e s idua i  

stresses i n  t h e  w a l l s  and no initial defomat ioas .  

(4) Given s u f f i c i e n t  time between tests (approximately 2 hours) t h e  

material of t h e  s h e l l s  undergoes complete e l a s t i c  recovery from buckling 

deformations and they may be (and have been) t e s t ed  over and over again 

with t h e  same buckling loads reached i n  successive tests. 

(5) An important add i t iona l  f ea tu re  of these  s h e l l s  is t h e  f a c t  t h a t  

t he  material from which they are made is t rans lucent  and bi-refringent.  

pho toe la s t i c  ana lys i s  of t h e  prebuckling, buckling and postbuckling strains 

of t h e  s h e l l s  is thus made possible.  The r e f l e c t i v e  (photostress) tech- 

nique has been used t o  study the  s t r a i n s .  

A 

S t i l l ,  and high speed photography have both been used t o  study t h e  

s t r a i n  d i s t r ibu t ions .  A Budd Co. L.F.Z. l a r g e  f i e l d  meter has been employed 

i n  a l l  pho toe la s t i c  s tud ie s .  

Tes  tinp: Apparatus 

She l l s  w e r e  t e s t ed  i n  a 4 screw Tinnius Olsen Universal Testing Machine 

(Fig. 5). S h e l l  end p l a t e s  were fabr ica ted  from 3 / 4 "  t h i ck ,  10" outer  diameter 

c i r c u l a r  steel p l a t e s .  

5/16" deep, concentric c i r c u l a r  groove w a s  f i r s t  machined i n  each p l a t e .  

These p l a t e s  were ground on both s ides .  A 1/2" wide, 

Next 
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a 3/32" wide, 1/16" deep, c i r c u l a r  groove, with outer  diameter matching 

t h a t  of t h e  s h e l l  w a s  recessed i n  the  center  of the  f i r s t  groove. I n  

add i t ion  each end p l a t e  was  f i t t e d  with an O-ring seal, while one p l a t e  w a s  

f i t t e d  with a pneumatic f i t t i n g ,  so t h a t  pressure o r  vacuum could be applied 

t o  t h e  s h e l l  as required. 

I n  preparing a s h e l l  f o r  t e s t ing  the  following s t eps  w e r e  ca r r i ed  out. 

(1) The inner  su r face  w a s  spray painted with r e f l e c t i v e  aluminum pa in t .  

This s t e p  w a s  required so t h a t  a photoe las t ic  study of the  s t r a i n s  could be 

c a r r i e d  out using the  photostress technique. 

t r y i n g  t o  achieve a t h i n  uniform deposit of pa in t  on the  sur face  w a s  overcome 

The d i f f i c u l t y  encountered i n  

with t h e  a i d  of a small blower. The blower w a s  used t o  maintain an a i r  

stream flowing through t h e  s h e l l .  An aluminum spray can w a s  used t o  main- 

t a i n  a fog of pa in t  i n  t h e  air  stream, the  p a i n t  being gradually deposited 

on t h e  s h e l l  surface.  I n  t h i s  manner a very s a t i s f a c t o r y  r e f l e c t i v e  su r face  

w a s  achieved. 

(2) One end p l a t e  w a s  placed on a l e v e l  t a b l e  with the  grooved s i d e  up. 

The s h e l l  t o  be t e s t e d  w a s  then positioned i n  t h e  groove. Hysol Resin and 

hardener, mixed as described above, w a s  poured i n t o  t h e  groove. Three equally 

spaced holes of 1/4" diameter which had been d r i l l e d  i n t o  t h e  inner  groove 

allowed t h e  mixture t o  flow across beneath the  s h e l l  so t h a t  t h e  inner  groove 

and ou te r  groove w e r e  each f i l l e d  up t o  t h e  l e v e l  of the  upper p l a t e  sur face .  

The assembly w a s  then l e f t  t o  cure f o r  about 8 hours. Following the  curing 

the  s h e l l  w a s  r i g i d l y  imbedded i n  the  end p l a t e .  
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(3)  The assembly w a s  then placed i n  the  t e s t i n g  machine and the  end 

p l a t e  w a s  fastened with cap screws t o  t h e  l e v e l l i n g  p l a t e  (see Fig. 5) which 

i n  t u r n  w a s  "spring loaded" against t h e  upper p l a t t e n  of t he  machine. The 

end p l a t e  f o r  t h e  lower end of the s h e l l  w a s  then placed i n  pos i t i on  on t h e  

lower p l a t t e n  and t h e  upper p l a t t e n  w a s  lowered u n t i l  t h e  s h e l l  bottom end 

en tered  i n t o  t h e  groove of t h e  end p l a t e .  

with Resin and hardener and l e f t  for  8 hours t o  cure. 

had r i g i d l y  bu i l t - i n  ends, w a s  v i r t u a l l y  f r e e  of i n i t i a l  stresses a t  the  edge. 

Now t h e  s h e l l  w a s  ready f o r  t e s t ing .  

The lower groove w a s  then f i l l e d  

The s h e l l ,  which then 

TestinR Procedure 

In order t o  in su re  t h a t  t he  end p l a t e s  of t he  s h e l l  remained p a r a l l e l  

during t e s t ing ,  a l e v e l l i n g  p l a t e  w a s  used (see Fig. 5). This p l a t e  had 3 

l e v e l l i n g  screws, threaded through it and r e s t i n g  aga ins t  t h e  upper p l a t t e n .  

The screws w e r e  equally spaced on a c i r c l e  of 11 1/2" diameter. A d i a l  gage 

w a s  mounted beside each screw i n  such a way t h a t  i t  indicated changes i n  

d i s t ance  between the  end plates  at t h a t  point.  I n i t i a l l y  a l l  d i a l  gages 

w e r e  set t o  zero. During t h e  t e s t i n g  process t h e  loading w a s  pe r iod ica l ly  

in t e r rup ted  so t h a t  t he  gage readings could be compared and the  l e v e l l i n g  

screws adjusted as required. 

be cont ro l led  so t h a t  t h e  d i a l  gage readings d id  not d i f f e r  by more than 

0.0005" a t  buckling. 

a 

In t h i s  way pa rd le l$sm of end p l a t e s  could 

The loading w a s  a l s o  in te r rupted  as required so t h a t  photographs of t he  

s h e l l  could be taken through the  photostress f i e l d  meter. 

which was  traced on t h e  s h e l l  outer su r f ace  with a grease penc i l ,  made 

poss ib l e  t h e  establishment of physical  l oca t ions  of f r i n g e  orders  and 

i s o c l i n i c  l i n e s ,  etc.,  observed i n  t hese  photographs. 

A 1" x 1" gr id ,  
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Prebuckling Deformations 

It is  known from t h e  theory of pho toe la s t i c i ty  t h a t  f r i n g e  orders obtained 

a t  any poin t ,  when conducting isochromatic s tud ie s ,  vary l i n e a r l y  with the 

maximum shear  stress r e s u l t a n t  a t  t h e  poin t .  Using Eqs. (3jb and ( 4 j  t o  express 

N i n  terms of displacements w e  have 
Y 

Subs t i t u t ing  f o r  du/dx from (5) we ob ta in  

VP . [ (1-v2) ; - (1-v2) Et' E t  N =  Y (l-VL) 

theref  o r e  

W (17) Y 

I n  v i e w  of t he  f a c t  t h a t  N and N are t h e  p r inc ipa l  stresses a t  any po in t  

of the prebuckled s h e l l ,  t he  m a x i m u m  shear stress r e s u l t a n t  a t  any poin t  is  

given by 

X Y 

1 Etw N - N  
X = - [P(v-1) - 3 2 t  2 t  

I n  f i g .  6 t h e  r a t i o  of m a x i m u m  shear  stress r e s u l t a n t  t o  maximum shear  

stress r e s u l t a n t  with edge e f f e c t s  neglected i s  p lo t t ed  f o r  a c y l i n d r i c a l  s h e l l  

subjected t o  a load equal t o  90% of the  Euler buckling load. 

t he  corresponding isochromatics. These isochromatics are shown i n  co lor  i n  Fig. 

Figure 7 is  a view of 
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8a. An i n t e r e s t i n g  and informative study of the  agreement between experimental 

and a n a l y t i c a l  r e s u l t s  is thus made poss ib le .  Studies i n d i c a t e  good agreement 

between t h e o r e t i c a l  and experimental r a d i a l  def lec t ions .  

The rapid v a r i a t i o n  i n  maximum shear stress re su l t an t ,  predicted by 

theory and manifested by t h i s  succession of r ings ,  is  due t o  t h e  rap id  var i -  

a t i o n  i n  t angen t i a l  (hoop) stress along the  s h e l l .  

va r i a t ion ,  i n  turn,  i s  due t o  t h e  rap id  v a r i a t i o n  i n  r a d i a l  displacement caused 

by t h e  clamped condition a t  t h e  s h e l l  edges. 

along t h e  s h e l l  is  almost of t he  damped s inusoida l  type, t he  t angen t i a l  stress 

v a r i a t i o n  i s  rap id ly  damped out on moving i n  from the  edge of the  s h e l l .  

The t angen t i a l  stress 

Since t h e  r a d i a l  displacement 

It is t h e  existence of these nonuniform stresses and displacements, observed 

i n  this pho toe la s t i c  study, t h a t  makes t he  membrane stress model used in classi- 

cal l i n e a r  theory inadequate f o r  describing the  a c t u a l  c y l i n d r i c a l  s h e l l  a t  the  

inc ip ience  of buckling. 

ence of these  stresses and deformations must be taken i n t o  consideration. 

I n  a cor rec t  ana lys i s  of buckling behavior t he  inf lu-  

Post Buckled Configurations 

I n  almost every tes t  conducted under axial  load and without i n t e r n a l  

pressure  the  s h e l l  buckled i n t o  a two tier, six per iphera l  wave, diamond shape 

configuration. 

t y p i c a l  s h e l l  are shown i n  Figs. 8b, c. These buckles w e r e  located almost 

midway e 1/4") along the  s h e l l .  

t he  s h e l l ,  as w e l l  as the  symmetry observed i n  t h e  photographs a t tes t  t o  t h e  

caut ion  used i n  f ab r i ca t ing  and t e s t ing .  With i n t e r n a l  pressure the  number of 

buckles around the  s h e l l  increased and the  tiers tended t o  move toward one of 

Photographs of t h e  90" i s o c l i n i c s  and the  isochromatics for a 

The exact p e r i o d i c i t y  of t h e  buckles, around 

t h e  edges. 
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Discussion and Conclusions 

Analy t ica l  Resu l t s  

(a) Computed Buckling Loads 

The a n a l y t i c a l  computations were ca r r i ed  out on an IBM 7074 d i g i t a l  

computer. The print-out of a typ ica l  program (For t -P i t t )  i s  contained i n  

!.ppendix I. 

could handle, t h e  ma t r i c i e s  w e r e  computed and s tored ,  one sec t ion  a t  a t i m e ,  

on a s torage  tape. 

and having more s torage  space ava i l ab le  i n  the  computer, t h e  determinants 

of the mat r ices  w e r e  evaluated. This l a r g e s t  m a t r i x  corresponded t o  

a 24 term expansion of t he  displacement functions.  

reported he re in  are based on a 24 term expansion unless  s t a t e d  otherwise. 

In order t o  maximize t h e  s i z e  of matrices which t h i s  computer 

Next, w i t h  the matrix generating program not required,  

A l l  t h e  a n a l y t i c a l  r e s u l t s  

I n  order t o  conserve computer time the  usual custom w a s  t o  f i r s t  take a 

f a s t  pass" a t  f ind ing  the  approximate buckling load. This w a s  done using a f f  

12 term expansion and l e t t i n g  P* vary from approximately 0.05 t o  1.0 i n  

i n t e r v a l s  of 0.05. The buckling load t o  be predicted w a s  known t o  be i n  the  

neighborhood of t h e  f i r s t  crossing of the  a x i s  (change i n  s ign  of t h e  determi- 

nant ) .  The next s t e p  w a s  t o  increase the  number of expansion terms t o  t h e  des i red  

l e v e l 2  24, and inves t iga t e  the  loca t ion  of t he  lowest zero using f i n e r  incre- 

ments. 

Examining Eq. ( 8 )  w e  note  that t h e  quant i ty  8, which determines the  wavelength 

of t h e  trigonometric func t ions  appearing i n  t h e  prebuckling r a d i a l  displacements, 

is independent of s h e l l  length.  It is therefore  t o  be expected t h a t  a proper 
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ana lys i s  per ta in ing  t o  s h e l l s  of greater length,  and hence more prebuckling 

waves, w i l l  r equ i r e  the  use of more terms i n  the  trigonometric expansions and 

hente l a r g e r  matrices. 

with r a t i o  of length t o  rad ius  (L/R) equal t o  0.75. This w a s  t h e  s h o r t e s t  

l ength  of shell inves t iga ted .  

The f i r s t  ana lys i s  w a s  therefore  c a r r i e d  out  on a s h e l l  

I n  Fig. 9 t h e  buckling load P* vs. J, t h e  number of per iphera lwaves ,  is 

presented f o r  t h i s  s h e l l ,  based on a 12 term expansion. We note  t h a t  t he  load 

reaches a minimum f o r  J = 10. I n  Fig. 10 the  computed buckling load vs.  i n t e r n a l  

pressure  parameter is  given for the same s h e l l ,  with J chosen t o  minimize the  

load, and number of terms K, equal t o  24. 

Analytical  r e s u l t s  f o r  d i f f e r e n t  s h e l l  geometries, with J = 2, are pre- 

sented i n  Figs. 13, 14, 15, and 16. In a l l  cases the  buckling loads w e r e  found 

t o  undergo s m a l l  increases with pressure a t  f i r s t  and then level off and become 

independent of pressure.  

sur ized  s h e l l .  

experimental and ana lys i s  LCS w e  increase  the  number of terms i n  t h e  expansions 

from 12 t o  24. 

I n  Fig. 1 7  a n a l y t i c a l  r e s u l t s  are given f o r  an unpres- 

Here w e  note  the  s i g n i f i c a n t  improvement i n  agreement between 

(b) Ef fec ts  of Number of Terms used i n  Trigonometric Expansions 

This i nves t iga t ion  w a s  concerned with an unpressurized s h e l l  with r a t i o  

of length t o  rad ius  (L/R) = 3 .  Here i t  w a s  found t h a t  t h e  e f f e c t  of varying 

J w a s  much more c r i t i c a l  (see Fig. 11) .  Buckling loads have been computed 

using 8 ,  12, and 24 term expansions. It is  noted t h a t  f o r  J = 2 and J = 4 

t h e  values of t h e  predicted buckling loads are equal and s e n s i t i v i t y  t o  the  

number of terms appears t o  be n i l  for K > 1 2 .  
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A t  J = 6 t h e  r e s u l t s  become more s e n s i t i v e  t o  t h e  number of terms and 

f o r  J = 8, up t o  10, t he  buckling loads,  based on a 24 term expansion, begin 

t o  drop q u i t e  sharply.  

reached a m i n i m u m  a t  J = 10. 

parameter is  p lo t t ed  f o r  t h i s  s h e l l  wi th  va lues  of J = 2 and J = 8. 

t h a t  t h e  load increases rap id ly  with pressure  f o r  J = 8, and eventually begins 

t o  level of f  a t  a loading s l i g h t l y  above t h a t  obtained f o r  J = 2. 

cates t h a t  t h e  discrepancy between ana lys i s  and experiment f o r  longer s h e l l s  

with higher values of J i s  centered around t h e  region of zero and low i n t e r n a l  

pressures  only. 

A t  J = i 2 ,  t h e  load begins t o  increase  again, having . 

In  Fig. 12 t h e  buckling load vs. i n t e r n a l  pressure  

W e  no te  

This indi-  

On studying t h e  equilibrium equations (Eqs. 13) we note t h a t  the  parameter 

J appears in t h e  f i r s t  two equations i n  powers not  g rea t e r  than the  second. 

I n  t h e  t h i r d  equation t h e  maximum power t o  which it  appears is  t h e  fourth.  

means t h a t  some components which go i n t o  making up t h e  m a t r i x  elements assoc ia ted  

with the  t h i r d  equation w i l l  change by a f a c t o r  of 10,000/16, as J changes from 

2 t o  10. 

s i g n i f i c a n t  e f f e c t  on t h e  number of terms required f o r  proper.oomputation, i n  

p a r t i c u l a r  f o r  longer s h e l l s .  

This 

This extreme change brought about by a l t e r a t i o n  of J may have a highly 

A more thorough inves t iga t ion  of t h e  e f f e c t  of t h e  number of terms on t h e  

outcome of such computations is given i n  Appendix 1. 

Experimental Results 

(a) Experimental Buckling Loads 

She l l s  with r a t i o s  of rad ius  t o  thickness (R/t) ranging from 133 t o  200 

w e r e  t e s t ed .  The lengths  var ied  from 0.75 t o  4.3 r a d i i ,  t he  rad ius  i n  each 

case being equal t o  4 inches. 
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Experimental buckling loads vs. internal pressure parameter, are presented 

f o r  various s h e l l  geometries i n  Fig. 10, and Fig. 13 through 18. I n  a l l  experi- 

ments the  buckling loads i n i t i a l l y  inc-eased with interns1 pressure t o  about 10% 

above t h a t  of t he  unpressurized shell. The loads then leve l led  of f  and w e r e  no 

longer appreciably e f fec ted  by increased pressure.  

(b) Effec ts  of She l l  Length and Rat io  of Radius t o  Thickness 

In Fig. ?2, t h e  buckling load vs. r a t i o  of length  t o  rad ius  f o r  an 

unpressurized s h e l l  of f ixed thickness and rad ius  is presented. 

load w a s  found t o  be almost independent of length f o r  L / R 2 1 . 5 .  

by about 4X as L/R decreases t o  .75. 

af fec ted  by changes i n  R / t  wi th in  the range of geometrics invest igated.  

Comparison of Analytical and Experimental Resul ts  

The buckling 

It drops off  

The loads w e r e  found not  to  be appreciably 

I n  f i g u r e  10 the  a n a l y t i c a l  and experimental r e s u l t s  are presented f o r  a 

The computed 

a 
pressurized s h e l l  with r a t i o  of length t o  rad ius  equal t o  0.75. 

and experimental buckling loads fo r  t he  unpressurized s h e l l  agree t o  within 

about 2 1/2%. 

ana ly t i ca l ly  predicted buckling loads both rise with pressure,  however, t h e  

loads predicted by analysis rise somewhat f a s t e r  a t  f i r s t .  

out eventual ly  and are no longer effected by pressure.  

For t h e  i n t e r n a l l y  pressurized s h e l l  the  experimental and 

Both curves l e v e l  
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The a n a l y t i c a l  and experimental r e s u l t s  f o r  a lodger unpressurized s h e l l  

(L/R=3.0) with d i f f e r e n t  values of J u s d i n  the  ana lys i s  are presented i n  Fig. 11. 

Here we note  t h a t  f o r  values  of J from 2 up t o  6 w e  have good agreement between 

experiment and analys is .  

e?,alysis b e g b  t o  differ qii;ite rapidly,  wfth the dfsagrzeroent being ii maximum 

a t  J = l O .  For J g rea t e r  than 10 t h e  a n a l y t i c a l  r e s u l t s  begin t o  move up again 

toward those of experiment. The cause of t h i s  disagreement w a s  discussed 

earlier. 

For values of J from 7 up t o  10 the  ertperiment and 

Comparison of experimental and a n a l y t i c a l  r e s u l t s  f o r  pressurized s h e l l s  

of var ious  geometrics is presented i n  f igu res  13, 14, 15, and 16. The 

analysis is r e s t r i c t e d  here  to the case of 3=2. 

between experiment and ana lys i s  i s  good f o r  zero pressure.  

a n a l y t i c  and experimental buckling loads increase  with i n t e r n a l  pressure,  t he  

increase  encountered i n  experiment is considerably g rea t e r  than t h a t  f o r  t he  

ana lys i s .  

It is noted t h a t  t he  agreement 

While both a 

I n  both cases the  loads l e v e l  off  a t  higher pressures .  

Conclusions 

The e f f e c t  of nonuniform prebuckling deformations brought about by edge 

supports,  i n  reducing t h e  buckling loads of clamped thin-walled cy l inders  

subjected t o  axial and laferal loading, is confirmed by both t h e  experimental 

and a n a l y t i c a l  r e s u l t s  reported herein.  

Reductions from theEuler  buckling loads of not  more than 15% have been 

encountered. It is, therefore ,  apparent t h a t  an explanation f o r  the  much 

l a r g e r  discrepencies  more commonly encountered in s h e l l  t e s t i n g  w i l l  have t o  

be  found i n  t h e  e f f e c t s  of imperfections i n  t h e  specimens as w e l l  as techniques 

usedfor  supporting of t h e  edges and app l i ca t ion  of loading. a 
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A study of t he  governing equations and the a n a l y t i c a l  r e s u l t s  i nd ica t e s  

t h a t  l a r g e r  matrices are required f o r  i nves t iga t ing  t h e  buckling loads of 

longer s h e l l s  (L/R>1.0), i n  p a r t i c u l a r  where low i n t e r v a l  pressures  are 

involved. 

It should be pointed out a t  t h i s  time t h a t  while the ana lys i s  ca r r i ed  

out  pe r t a ins  t o  s h e l l s  with clamped edges, s h e l l s  with many o ther  types of 

edge conditions may be analysed provided t h a t  appropr ia te  sets of functions 

are chosen f o r  expansion of t h e  buckling displacements. 

The inadequacy of t h e  c l a s s i c a l  membrane model t o  descr ibe  t h e  s h e l l  

i n  t h e  prebuckling regime has  already been discussed. Its inadequacy for 

describing the  s h e l l  a t  buckling is born out  by both the  experimental and 

a n a l y t i c a l  r e s u l t s .  The e f f e c t s  of l a r g e  non-uniform prebuckling defoxmations 

must be incorporated i n t o  any ana lys i s  of t he  buckling of thin-wall s h e l l s  

subjected t o  combinations of axial loading and i n t e r n a l  pressure.  

The i s o l a t i o n  of the  e f f e c t s  of these  deformations has been made poss ib le  

through the  preparation of test  specimens which are v i r t u a l l y  f r e e  of imper- 

f e c t i o n s  as w e l l  as the high degree of accuracy used i n  f i t t i n g  edge supports.  

The caut ion  used i n  t h e  appl ica t ion  of loading has a l s o  been a cont r ibu t ing  

f a c t o r .  
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Fig. 3a. Coordinates x, y, z and Displacements u, v ,  w .  

I 

x- 

Y 

Fig. 3b. Forces and Moments on Element of Wall (p = Irtternal 
Pressure). 
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Fig. 7 .  View of Isochrmatics of a Thin Cylindrical S h e l l  Subjected to  Axial 
Loading Equal to 90% of the Classical Buckling Load. 



---- 

*-a- * *  
Fig. 8a, View of Prebuckled Cylindrical. 

Shell Isochromatics. 

. mar 

Fig. 8b. View of Post-buckled Cylindrical 
Shell Isochromatics . 

46 

Fig. 8c. View of Post-buckled Cylindrical 
Shel l  90" Isoclinics. 
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APPENDIX A 

Inves t iga t ion  of Number of Terms Required i n  Expansion 

Results of t he  computations car r ied  out  i n  t h i s  paper i nd ica t e  that, 

f o r  longer s h e l l s  subjected t o  no lateral loading, t h e  a n a l y t i c  r e s u l t s  

dev ia t e  from experiment when the  number of pe r iphe ra l  wave permitted is i n  

the neighborheod e5 10. Sines thz sfze of the matrices used here in  was  

r e s t r i c t e d  t o  72 x 72 one is led  to i n v e s t i g a t e  the PQssiblP- effects Of 

using l a r g e r  matrices. In  t h e  f i n i t e  d i f f e rence  methods used i n  Ref. [15] 

and [23] matrices of no t  less than 150 x 150 w e r e  employed when analysing t h e  

behavior of such s h e l l s .  

As discussed earlier, s i n c e  prebuckling deformation wavelengths are 

independent of s h e l l  length i t  is  therefore  t o  be expected that more terms i n  

t h e  buckling displacement expansions and hence l a r g e r  mat r ices  are t o  be 

required when analysing l a r g e r  s h e l l s .  

buckling load vs.  r a t i o  of s h e l l  length t o  r a d i u s d s  p lo t t ed  f o r  a s h e l l  of f i xed  

R / t ,  with J held constant a t  10. 

ment i s  r e l a t i v e l y  small f o r  L/R = 0.75 but  increases r ap id ly  as L/R increases.  

This observation is cons i s t en t  with t h e  contention t h a t  more terms i n  the  

expansions are required f o r  l a r g e r  s h e l l s ,  e spec ia l ly  i f  a wide range of values 

of J are t o  be inves t iga ted .  

In Fig.  19  t h e  a n a l y t i c a l l y  predicted 

We observed t h a t  t h e  devia t ion  from experi- 

The determinant vs. loading for  J = 8 and J = 10, wi th  d i f f e r e n t  numbers 

of terms employed, has been p lo t t ed  i n  Figs.  Z O a ,  20b, 21a, and 21b, f o r  a 

p a r t i c u l a r  s h e l l  geometry with p = 0. I n  Figs. 20a, and 21a, t he  determinants 

have been scaled t o  g ive  approximately the  same magnitude and are p lo t t ed  from 
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P* = 0.05 up t o  the  f i r s t  crossing of the  axis. In Figs. ZOb, and Zlb, these  

determinants are p lo t t ed  with t h e i r  magnitudes i n  the  same r a t i o  as i n  the 

corresponding previous f igures .  The scale has been enlarged f o r  c l a r i t y  and 

the  value of P* v a r i e s  between the  values associated with the  f i r s t  and 

second crossing of the axie. 
.. - 

Y e  note  in these  figures t h a t  for tne 12 term expansion the  '*dip" below 

the  axis is much loss than f o r  the q a x ~ ~ i c c  cf 8 terms. 

t o  i l id ica te  that with s u f f i c i e n t  terms taken the  "dip" would p u l l  canpletely 

nis m s l d  appear 

above the  axis and hence remove the two lowest zeros from t he  r e s u l t s .  The 

ana lys i s  would then g ive  f a i r  agreement with experiment. 
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APPENDIX B 

Fortran-Pitt Computer Program (Print-out) 



GORMAN DAN BUC PRO8 2 43fMECHE 245 no 
** H HOUNT SCRATCH ON DRIVE 24 WITH RING ON 
p* T THIS PROGRAM LOADS SCRATCH TAPE OY D R ' Z I  FOR NEXT PROGrW 66 

COMPILE FORTRAYIEXECUTE FORTRANIDUMP I F  ERROR 
( ) ~ ~ B R O U T I N E C A D D ( A R I A I ~ B R I B I I C R . ~ I  1 

CR DEFINED BUT NOT USED I N  AN ARITH STMNTo 
C I  OEFINED BUT NOT USED I N  A% ARITH STMNTo 

CR DEFINED BUT NOT USED I N  AN ARITH STMNTo 
C I  DEFINED BUT NOT USED I N  AN ARITH STMNTo 

S U B R O U T I N E C S U B T I A R I A I ~ B R I B I , C R ~ ~ ~ )  

S U B R O U T I N E C U U L T ( A R I A I ~ B R ~ B I I C R , C ~ ~  
CR DEFINED BUT NOT USED IN AN ARITH STMNT. 
C I  DEFINED BUT NOT USED I N  AN ARITH STUNT. 

CR DEFINED BUT NOT USED I N  AN ARITH STMNTo 
CI OEFINEO BlJf NOT USEC tN AN A R I f H  3THNfo 

S U B R O U T I N E C D I V I A R r A I r 8 R I B f r C R t C I )  

SUBRDUTINESINHIAR,AIreR,BRIBI) 
SUBROUTINECOSHIARIAI~BR,BI)  
S U B R O U T I N E E Z ( ~ R t A I r B R 1 8 I )  

BR DEFINED BUT NOT USED I N  AN ARITH STMNTo 
81 DEFINED BUT NOT USED I N  AN ARITH STMNfo 

V A L  DEFINED BUT NOT USED I N  AN ARITH STMNTo 
S U B R O U T I N E C S C S ~ A ~ I A ~ I A ~ ~ A ~ I E ~ ~ C ~ I S ~ ~ V A L ~  

S U ~ R O U T I N E S S C S ~ A ~ I A ~ I A ~ ~ A ~ ~ E L I C ~ ~ S ~ ~ V A L ~  

S U B R O U T I N E S S C C I A ~ I A ~ I A ~ I A ~ ~ E L I C ~ I S ~ ~ V A L )  

S U B R O U T I N E C S C C ( A ~ ~ A ~ I A ~ I A ~ I E L ~ C ~ I S ~ I V A L )  

SUBROUTINECCCCI A l e  A2r A3s A 4 r  EL, C l  r S 1  I VAL 1 

S U B R O U T I N E S S S S ~ A ~ ~ A ~ ~ A ~ I A ~ ~ E L ~ C ~ ~ S ~ I V A L ~  

V A L  DEFINED BUT NOT USED I N  AN ARITH STMNT. 

V A L  OEFINED BUT NOT USED I N  AM ARITH STUNT0 

V A L  DEFINED BUT NOT USED I N  AN ARITH STMNTo 

V A L  DEFINED BUT NOT USED I N  AN ARITH STUNTO 

V A L  DEFINED BUT NOT 
*** MAIN PROGRAM *** 

K DEFXNED BUT NOT 
2000 SUBROUTINE 
2006 CR=AR+BR 
2009 C I = A  I +B1 
2012 RETURN 

0005865028 

2033 SUBROUTINE 
2039 CR-AR-BR 
2042 C I = A I - 8  I 
2045 RETURN 

2066 SUBR0UTINE 
2012 A l - A R  
2014 A 2 - A I  
2076 Bl=BR 
2078 82=81 

END 

. END 

USED I N  AM ARITH SlCINTo 

USED I N  AN ARITH STNNTo 
C A D O ~ A R I A I ~ ~ R I B I ~ C R I C I )  

2080 CR- A 1  *B 1-A2*B2 
2087 CI=Al*B2+AZ*Bt  

- 2094 RETURN 

%2* 
END 
SUBROUTINE CDIV  I A R ~ A I ~ B R ~ ~ I ~ C R I C I )  

2126 AI=AR 
2128 A 2 m A I  
2130 81-BR 



. 2132 
2134 
2141 
2144 
2148 
2151 
2161 

2190 
2204 
2208 
22 18 
2226 
2230 
2234 

2259 
2265 
2269 
2211 
2273 
2277 
2283 
2287 
2291 

2314 
2320 
2323 
2321 
2331 

2351 
2357 
2361 
2376 
2391 
2395 
2 4 1 l  
2421 
2443 
2447 
2469 
24?7 

2508 
2514 
2518 

2545 
2549 

2576 
2580 

26Ol 
2611 

2 
3 
1 
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2638 

e ‘2647 
2678 
2684 
2688 
2712 
2716 
2760 
2744 
2760 
2772 
2796 
28QS 

2835 
2841 
2845 
2870 
2874 
2899 
2903 
2920 
2932 
2957 
2966 

2996 
3002 
3006 
3028 
3032 
3054 
3058 
3080 
3084 
3106 
3115 

3145 
3151 
3155 
3x79 
3183 
3207 
3211 
3235 
3239 
3263 
3272 

CYL SHELL 8UC PRO8 

CALLERKIN METHOD 
DIHENSION At211241 

3303 K=24 



- 3306 
3308 
3326 
3328 
3331 
3345 
3347 
3349 
3351 
3353 
3357 
3361 
3365 
3368 

3399 
3400 
3406 
3408 
3421 
3431 
3435 
3438 
3441 
3454 
3464 
3472 

3499 
3518 
3522 
3526 
3529 
3532 
3538 
3548 
3556 
3581 
3600 
3604 
3608 
3611 
3614 
3620 
3621 
3627 

36S5 
3664 
3666 
3685 
3102 

E: 
31S7 
3160 
3163 

6 

18 

7 



3769 

3796 
3821 
3844 
3853 
3860 
3869 
3816 
3818 
3880 
3884 
3888 
3891 
3894 
3898 
3900 
3901 
3909 
3912 
3914 
3915 
3923 
3929 
3934 

a 3944 - 
3971 
3979 
3984 
3994 
4003 
4010 
4017 
4022 
4027 
4037 
4045 
4052 
4056 
4066 
4074 
4081 
4085 
4093 
4098 
4108 
41 18 
4128 
4138 
4143 

a 4 1 5 3  
4162 
4172 
1181 
4200 



I - 4219 
4223 

42 30 
4233 
4246 
4259 
4201 
4292 
4297 
4320 
4328 
4338 
4348 
4355 
4360 
4370 

I 4371 
4305 
4395 
4402 
4407 
441l 
4424 
4432 
4442 
4458 
4460 
4404 
4489 
4499 
4513 
4523 
4537 
4556 
4575 
4571 
4581 

~ 4505 
4500 
4591 
4594 
4599 
4615 
4616 
4618 
4623 
4631 
4641 
4666 
4656 
4674 
4670 
4608 
4694 
4704 
4720 

I 4227 

I 

I 

I 
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-4724 
4736 e 4755 - 
4759 
4763 
4766 
4769 
4779 
4791 
4799 
4811 
481s 
4829 
4033 
4847 
4861 
4867 
4877 
4805 
4895 
4900 
4910 
4926 
4936 
4944 
4954 
4970 

5001 
4902 

5004 
5007 
5010 
5016 
5022 
5024 
5026 
5030 
5034 
5037 
5040 
5043 
5048 
5059 
5060 
5062 
5065 
5070 
5080 
5081 
5083 
5086 
5091 e 5107 
5108 
51 10 
5113 
5118 



- 5132 
5133 a 5135 - 
5148 
5153 
5156 
5166 
5170 
5113 
S1?4 
5176 
5180 
5185 
5189 
5190 
5192 
5207 
5215 
5223 
5233 
5238 
5248 
5253 
5261 
5271 
5276 
5286 
5308 
5327 
5335 
5343 
5353 
5358 
5368 
5373 
5381 
5391 
5396 
5406 
5420 
5423 
5428 
5441 
5642 
5444 
5447 
5452 
5464 
5465; 
5467 
5471 
5491 

5498 
5503 
5323 

73 GO TO 107 
106 W4=OoO 
107 Xl~(E*T)/((lo-IQOI-POI))*RADI 

Xt=D* I R * * 4  1 
Xl=Xl+X2 
CALL SSCC(G22rXlrOoO~X2rELtCl~SltX3) 

108 IF~M-N)110r109~L10 
109 WS=Xl*€L 

110 w5=000 
111 IF(H-N+1)113rll2rlL3 
113 I F ( ~ ~ N ~ 1 ~ 1 1 4 t l l Z ~ l L 4  
112 WSA=Xl*EL*oS 

114 WSArOoO 
11s Y1=( POI*E*T*GAl*PI)/fRAD*(lo~(POI~POI))) 

GO TO 111 . .  

GO TO 115 

Xl=(FN-lo)*PI/EL 
X2=(FM-lo )*PI/EL 
CALL CSCS(G2rGlrX2rXlrELtClrSlrX3) 

CALL CSCS(G2rGlrX2rXlrELrCl~SlrX4) 

XZ=(FM-lo )*PI/EL 
CALL CSCS(G2rGl~X2~XlrELrClrSlrXSI 

CALL CSCSI G2rGlr X2, X1 'EL rC1 t S 1  t X6) 
W ~ ~ ( ( ( ~ ~ - F N ) / E L ) * Y ~ * ( X ~ + X ~ ) ) - I ( ( ( F N  /EL)*YlI*(XS+X6)~ 
Y ~ E * ( - l ~ ) ~ P O I * T * G A 2 * P I / ~ R A D * ~ l ~ ~ ( P O ~ ~ ~ ~ I ~ ~ ~ E L ~  
X 1st FN-10 1 *PI /EL 
X2= ( F H- 1 1 P 1 /EL 
CALL SSCC I GZr XlrGlr XtrELr Clr SlrX3) 

CALL SSCC(G2rXl,GlrK2rECtClrSltX~) 

X2=FU*PI/EL 

Xl=FN*PI/EL 

XZ=FM*PI/EL 

X2=FM*PI/EL 

Xl=FN*PI/EL 
' X2t(FH-lo )*Pf/EL 
CALL SSCC(G2rXlrGl~XtrELtClrSltXS) 

CALL SSCC(G2rXlrGlrXZtELrClrSlrX6) 
W7r( (FN-l*)*Y*(X3+X4) )+(FN*Y*(XS+X61) 
IF(M-Nlll7rll6rLl? 

117 IF(M-N+1~118~116r118 
116 W81(-P) t ( t (FN-1. ) * P I  1 /EL 1 *e2 1 *,EL*oS 

X2=FU*PI/EL 

GO TO 119 
118 W8=000 
119 1F(H-N)12lrlZOr121 
121 IF(H-N-l)122e12Or122 
120 W9r(-P)*(1FN*PI/EL)**2)*EL*o5 

122 W900.0 
123 IF(M-N)125rlZ4rlZ5 

GO TO 123 

124 WlO=(E.T*R*R*Q*EL/RAD)-(POI*P*R~R*€L) 
GO TO 126 

125 W10=000 
126 IFI~l-N)128t127rl28 
128 IF(H+l-N)129tl27e129 
127 w ~ O A - ( ( E * T ~ R * R ~ Q I R A D ) - I Q O I . P . R . R ) ) . * E ~ ~ ~ ~  

60 TO 130 



t 
5526 

*E 
5530 
5538 
5546 
5551 
5561 
55ll 
5579 
5589 
5605 
5615 
5620 
5630 
5640 

I 5645 
5655 
5665 
5675 
5678 
5692 
5700 
5108 
5718 
5728 
5133 

5753 
5743 
5768 
5778 
5788 
5796 
5806 
58 16 
5823 
5826 
5840 
5848 
5858 
5868 
5873 
5883 
5893 
5903 
5908 
5918 
5928 
5936 
5946 
5956 

e 9 6 3  
5966 
5979 
5987 
5995 

I 

a5743 
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6005 
601s 

:E 
6040 
6052 
6057 
6065 
6075 
6085 
6090 
6100 
6110 
6119 
St22 
6124 
4126 
6136 
6144 
6152 
6162 
6167 
6171 
6182 
6192 
6200 
62 10 a E::: 
623b 
6241 
6251 
6259 
6269 
6277 
620’1 
6293 
6307 
6317 
6322 
6332 
6337 
6344 
63SS 
6365 
6372 
6386 
6396 
6401 
6411 
6419 
6429 
6437 
6447 
6454 

6403 



6502 
(5505 

e 6 5 0 9  
6512 
65 15 
6516 
6519 
6522 
6523 
6534 
6536 
6539 
6541 

331 
338 

339 
340 

336 

410 

P=P+DELP 
IF (P-PO) l S l r 3 3 7 r l S l  
I F  (R-RO) 338,339e338 

GO TO 1 
I F  (PR-PRO) 310e336r340 
PR=PR+DPR 
GO TO 341 
PRINT ~ ~ O ~ P O I ~ R A D ~ E ~ E L ~ T I R I Q R  
END FXLE 1s 
REMIND 1s 
FORMAT ( l O ( F l O o t ~ l X 1 1  
STOP 
END 

R=R +Z 0 
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SUBROUTINE CAD0 

VARIABLES 

A I  0000 AR 0000 B I  0000 BR 0000 CI 0000 CR 

STATEMENT NUM0ERS 

NAME LOCO 

STMNf LOC. 

0 0 0  NONE m o o  * 

SUBROUTXNE CSUBT 

O V A R I  A0LES 
NAUE LOCO 

AX 0000 AR 9000 81 0000 8R 0000 CI 0000 CR 

STATEMENT NUMBERS 
STHNT LOCO 

0 0 0  NONE 0 0 0  

SUBROUTINE CMULT 

VAR X A8L ES 

AI 0000 A 1  2115 61 0000 6 1  2117 CI 0000 
AR 0000 A2 2116 BR 0000 62 2118 CR 0000 

STATEMENT NUUBERS 

NAME LOCO 

STMNT LOCO 

0 0 0  NONE m o o  

SUBROUTINE COIV 

VARI ABCES 

0000 A 1  2192 81 0000 81 2194 CI 0000 0 
CR 0000 AR 0000 A2 2193 8 R  0000 82 2A95 

STATEMENT NUMBERS 

a:,,, Loco 



CORHAN DAN BUC PROB DET 3 STUECHE 24s 

** I" T H I S  PROGIM READS SCRATCH TAPE ON DR 24 LOADED BY PR06.N 1 
COMPILE FORfRAqrEXECUTE FORTRAN, DUMP IF ERROR 77 

SUBROUTINEDET(A~NtJX1ANS) 
L C  DEFINED BUT NOT USED I N  AN ARITH STMNT. 
I 1  DEFINED BUT NOT USED I N  AN ARITH STMNT. 
12 DEFINED 8UT NOT USED I N  AN ARITH STMNT. 
HO DEFINED BUT NOT USED I N  AN ARXTH STUNT- 

KK DEFINED 8Uf NOT USED I N  AN ARITH STHNTo 
JJJ DEFINED 8UT NOT USED I N  AN ARITH STMNfo 

**+ MAIN PROGRAM +** 

2000 SUBROUTINE DET(AeNmJX,ANSI 
DIMENSION A t  1300) 

2006 LC=N 
2008 LR-N 
2010 23 DO 31 L s l r L R  
20 I4 NO=L+JX*tL-lj  
2021 3 fF(L-LR)2,4,+ 

TEST 
2026 
2030 
2032 
2035 
2040 
2041 
2056 
2058 
2060 

FOR POSSIBLE ROW INTERCHANC€ 
2 BIGA=A(NOJ 

NPN-0 
Il=L+l 
DO ZS JO*Il,LR 
NPs JO+JX* ( 1-1) 
IF(ABSF(BfGA)-ABSF(A(NP)))2~,25,2S 

24 BIGA=A(NP) 
NPN=NP 

25 CONTINUE 

TEST FOR fOSSl6LE COLUHN INTERCHAWGE 
2061 NPM=O 
2063 12=L+l 
2066 DO 52 Hs12rLC 
2011 NZ = L+JX*(Wl) 
2018 IF(ABSF(BIGA)=ABSF(A(NZ))) Sle52oSt 
2081 51 NPM=NZ 
2089 BIGA=A(NZ) 
2091 52 CONTINUE 
2092 IF(NPM1 55rS4rS5 
2095 54 IF(NPN) 2lr4r27 

INTERCHANGE COLUMNS 
2098 55 DO 56 K=L,LC 
2103 NO = K+(L- l l *JX 
2109 NU = NPM+(K-L) 
211s C -A(NQ) 
2119 A(NQ) - A(NlJ1 
2123 56 AINU) = C 
2126 GO TO 4 

INTERCHANGE ROLJS 
2127 27 DO 26 K s L r L C  
2132 NO - L+JX*(K- l )  

C=-A(NQ) 
NU = NPN- ( 1-1) JX+ JX* 1 KOA 1 
A(NQI=A(NU) 

&;:; 
2157 
2161 26 A(NU)-C 
2164 4 D I V A * l o O / A ( N O l  



* 
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‘TEST FOR COMPUTATIONAL SINGULARITY 

2172 6 SENSE LIGHT 4 
2173 PRINT 1 6 r L * A ( N O )  
2181 16 FORHAT(l2HERROR I N  ROW13rZAH OF SIMEO-DIVIDING BV €1606) 
2191 ANSte99999999E19 

2194 11 XF(L-LRll tr42p42 

*2 170 IF D I V I D E  CHECK 6 r l l  

2193 RETURN 

HATRIX TRANSFORMATION 
2199 12 HO=L+A 
2202 DO 28 J=MOrLC 
2207 NRsL+JX*(J-11 
2214 28 A i  Nit j = A j  NR W D f V A  
2220 29 I l = L + 1  
2223 DO 31 I = f r r t R  
2228 NSs I +J X* ( t-1) 
2235 FHLTA=A(NS) 
2239 DO 31 JZLILC 
2244 NT=I+JX+( 3-11 
2251 NY=L+JX+(J- l )  
2258 31 A (  NT )=A( NT l-A(NY )*f HLTA 

COMPUTE THE DETERMINATE = P I  OF A ( I r 1 )  
2269 42 ANSsloO 
2271 DO 94 I s l r N  

N V = I + J X * ( I - l I  
a 2 2 7 5  2282 64 ANS=ANS*A(NV) 

2288 RETURN 
END 

CYL SHELL PRO8 

GALERKIN METHOD 

2340 
2343 
2346 
2349 
2351 
2353 
2372 
2375 
2395 
2415 
2436 
2439 
2459 
2480 
2500 
2521 a:;:: 
2554 
2555 
2559 

DIHENSION A ( 7 2 1 7 2 )  
K=24 
KK=2*K 
KKK=3*K 
x=oeo 
Y=4.0 

9 READ TAPE 15 ~ ( ( A ( 1 r J ) r I ~ l n K ) r J ~ l r K )  

1 READ TAPE AS* ((A(1rJ)rIllrK)rJfJJrKK) 
2 READ TAPE 151 ((A(IrJ)rItJ3rKK)rJiArK) 
3 READ TAPE 151 ( ( A ( I I J ) ~ I ~ J J ~ K K I ~ J ~ J J ~ K K )  

4 READ TAPE 159 ((b(IrJ)rftlrK)rJ=JJJrKKK) 
5 READ TAPE 15r ((A(I~J)rI=JJrKK)rJ*JJJ~KKK) 
6 READ TAPE 159 ((A(IrJ)rXtJJJrKKK)rJ-ArK) 
7 READ TAPE 151 ( ( A ( I r J ) r I = J J J e K K K 1 , J I 3 J I K K l  
8 READ TAPE 151 (IA(IrJ)rI*JJJrKKK)rJ*JJJeKKK) 

J J=K+ l  

JJ J=J J+K 

C A L L  DET (ArKKKrKKKrANS) 
PRINT 3339 ANS 

X=X+Ao 
333 FORMAT (262008) 

IF (X -Y)  9 r l O r 9  



2563 10 REWIND 1s 
STOP 
END 

DET 
a"' 

SUBROUTINE 

VAR I ABL fS 

A 0000 DIVA 2321  I 2  2320 
ANS 0000 . FHLTA 2333 J 2329 
B I G A  2314 I 2331 JD 2317 
C 2326 Xl 23 16 3K 0000 

NAME LOC. 

STATEMENT NUMBERS 
STt4NT LOG. 

2 2026 6 2172 i 6  2181 
3 2021 11 2194 23 2010 
1 2164 12 2199 2 4  2056 

MAIN PROGRAU 

VARIABLES 

A 2568 I 7158 JJ 7759 
ANS 7761 J 7757 JJJ 7760 

NAME LOCO 

STATEHENT NUMBERS 
MNT LOCO 

3 2415 5 2159 
4 2439 6 2480 

0 1 2375 
2 2395 

K 2323 
L 2332 
LC 2310 
LR 231 1 

25 2060 
26 21bi 
XI 2127 

K 7752 
KK 71s) 

7 2500 
8 2521 

79 

n 2321 
no 2328 
N 0000 
NO 2313 

28 2214 
29 2220 
31 2258 

KKK 7754 
X 7155 

9 2353 
10 2563 

NP 
NPM 
NPY 
NO 

4; 
i* 
5 

Y 

33:. 

HIGHEST ADDRESS ASSXGNEO 7772 
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